Total No. of Pages: 2

Seat	
No.	

F. E. (All Branches) (Semester - I & II) (Revised)(CBCS) Examination, May - 2019

Basic Electrical Engineering Sub. Code: 71812 Day and Date: Monday, 06 - 05 - 2019 Total Marks: 70 Time: 10.00 a.m. to 12.30 p.m. Attempt any 3 questions from each section. Instructions: 1) 2) Figures to the right indicate full marks. Draw a neat labelled diagrams as apart of Explanation. 3) In case of any missing data, assume suitable value, State it clearly. 4) **SECTION-I** Define the terms and their units 01) a) Potential Difference. E.M.F. iii) Current. Two batteries A & B are connected in parallel across a load resistance of 4 ohm. The emf & internal resistance of battery A & B are 20 volts, 2 ohm and 24 volts, 4 ohm respectively, using mesh or node analysis, Find current in battery A, i) current in battery B. ii) current in load resistance. [6] Define- i) Magnet ii) Magnetic flux density iii) Reluctance. [6] 02) a) Explain the concept of magnetic leakage & fringing. [5] b) Derive the expression for average value by analytical method. 03) a) A series R-L-C circuit connected across 200 volts, 50 Hz ac supply draws a current of 5 amp at unity power factor. If the capacitance is of 507 microfarad, Find Resistance. i) Capacitive & Inductive Reactance ii) [6] iii) Power P.T.O.

01)	Anguaga	SV - 620
	Answer any TWO:	
	a) Explain Kirchhoff's Laws.	[6]
	b) Describe B-H Curve.	[6]
(c) Derive the equation of Impedances in R-L-C circuit.	[6]
05)	SECTION - II	
Q5) a	and 3 phase machines	10
b	Prove that line Current = $\sqrt{3}$ Phase Phase current in D circuit.	[6] Pelta connected [6]
Q6) a	& disadvantages.	T # 7
b)	 Draw Single line diagram of typical power system and exp involved in transmission of Electrical power from general consumer premises. 	[5] blain the stages atting station to
Q7) a) b)	voltage ratio, current ratio and turns ratio.	1 47
28) Ans	swer any TWO:	
a) b)	State the principle on which transformer works. Describe sketch constructional features of Core type transformer. A 200/400 V, 50 Hz single phase transformer operates on rational no load by taking 1 A at 0.5 pf. The emf per turn is 2 V. Fin i) Maximum flux in core ii) Secondary winding iii) Iron loss	[6] ted supply at
c)		[6]
	Why Earthing is necessary in a wiring installation? Briefly one method of Earthing.	explain any [6]